2.17 Conditional Identities:
We have already studied identities in section 2.3 and let us recollect
the concept
For any value of  x, y and z we can verify that
following.
(x+y)(x+z) = x(x+z)+y(x+z)= x2+xz+xy+yz= x2+x(y+z)+yz
By substituting suitable values for x, y, z in the
above identity, we can arrive at the following identities.
| 
   No  | 
  
   Formula  | 
  
   Expansion  | 
 
| 
   1  | 
  
   (a+b)2  | 
  
   a2+b2+2ab  | 
 
| 
   2  | 
  
   (a-b)2  | 
  
   a2+b2-2ab  | 
 
| 
   3  | 
  
   (a+b)(a-b)  | 
  
   a2-b2  | 
 
| 
   4  | 
  
   (a+b+c)2  | 
  
   a2+b2+
  c2+2ab+2bc+2ca  | 
 
| 
   5  | 
  
   (x+a)(x+b)(x+c)  | 
  
   x3+
  x2(a+b+c) +x(ab+bc+ca)+abc  | 
 
| 
   6  | 
  
   (a+b)3  | 
  
   a3+b3+3ab(a+b)  | 
 
| 
   7  | 
  
   (a-b)3  | 
  
   a3-b3-3ab(a-b)  | 
 
| 
   8  | 
  
   (a+b) (a2+b2-ab)  | 
  
   a3+b3  | 
 
| 
   9  | 
  
   (a-b)
  (a2+b2+ab)  | 
  
   a3-b3  | 
 
| 
   10  | 
  
   (a+b+c)( (a2+b2 +c2-ab-bc-a)  | 
  
   a3+b3
  +c3-3abc  | 
 
2.17 Problem 1: If a+b+c = 0 prove that
a2/bc+ b2/ca+ c2/ab = 3
Solution:
We need to simplify LHS such that we get an
expression 3X/X(=3)
Since a+b+c = 0 we have a
=-b-c. b= -a-c, c=-a-b
| 
   No  | 
  
   Step   | 
  
   Explanation  | 
 
| 
   1  | 
  
   LHS=
  a3/abc+b3/bca +c3/cab  | 
  
   Multiply
  both numerator and denominator of each of the term in LHS by a, b, c
  respectively  | 
 
| 
   2  | 
  
   =
  (a3+b3+c3)/abc  | 
  
   Take
  abc out as  the
  common divisor  | 
 
| 
   3  | 
  
   =(a2.a+bb2+cc2)/abc  | 
  
   split
  powers of a, b, c  | 
 
| 
   4  | 
  
   =[a2(-b-c) + b(-a-c)2+c(-a-b)2]/abc     | 
  
   substitute   -b-c, (-a-c)2, (-a-b)2
  respectively  for a, b2,c2  | 
 
| 
   5  | 
  
   =
  [a2(-b-c) + b{-(a+c)}2+c{-(a+b)}2]/abc     | 
  
   | 
 
| 
   6  | 
  
   =
  [- a2b- a2c +b(a2+ c2+2ac)+ c(a2+b2+2ab)]/abc  | 
  
   expand
  (a+c)2,  (a+b)2  | 
 
| 
   7  | 
  
   =[- a2b- a2c +ba2+ bc2+2abc+ ca2+cb2+2abc)]/abc    | 
  
   Terms
  get cancelled(red color)  | 
 
| 
   8  | 
  
   =[
  bc2 +cb2+abc+3abc]/abc  | 
  
   Simplify  | 
 
| 
   9  | 
  
   =
  [bc(c+b+a)+3abc]/abc  | 
  
   Simplify  | 
 
| 
   10  | 
  
   =[bc(0)+3abc]/abc   | 
  
   a+b+c =0  | 
 
| 
   11  | 
  
   =
  3abc/abc =3  | 
  
   | 
 
In the above example we simplified the equation
using the condition a+b+c = 0
Definition : 
The  identity(equation) which is true for all
values of variables  subject to  given conditions are called ‘conditional
identities’
2.17 Problem 2: If a+b+c = 2S prove that
a2+b2- c2+2ab/ a2-b2+ c2+2ac
= (S-c)/(S-b)
Solution:
Let us first take the
numerator of LHS
| 
   No  | 
  
   Step   | 
  
   Explanation  | 
 
| 
   1  | 
  
   a2+b2-
  c2+2ab  | 
  
   Given
  numerator  | 
 
| 
   2  | 
  
   =
  (a2+b2+2ab)-c2   | 
  
   Rearrange
  terms  | 
 
| 
   3  | 
  
   =
  (a+b)2- c2  | 
  
   This
  is of the form X2-Y2 =(X+Y)(X-Y)  with X =a+b and
  Y=c  | 
 
| 
   4  | 
  
   =
  ((a+b)+c)(a+b)-c))  | 
  
   | 
 
| 
   5  | 
  
   =2S(2S-2c)  | 
  
   It
  is given that a+b+c = 2S and hence a+b-c = a+b+c-2c=2S-2c  | 
 
| 
   6  | 
  
   a2-b2+
  c2+2ac =2S(2S-2b)  | 
  
   Follow
  the above steps to simplify denominator of LHS  | 
 
LHS = a2+b2- c2+2ab/ a2-b2+
c2+2ac
= 2S(2S-2c)/2S(2S-2b)
=2(S-c)/2(S-b)
=(S-c)/(S-b) = RHS
2.17 Problem 3: If a+b+c = 2S prove that
S2+(S-a)2+ (S-b)2+(S-c)2=
a2+b2+c2
Solution:
| 
   No  | 
  
   Step   | 
  
   Explanation  | 
 
| 
   1  | 
  
   LHS
  = S2 +(S2+a2-2aS)+(S2+b2-2bS)+(S2+c2-2cS)  | 
  
   Expand
  individual terms using (a+b)2  | 
 
| 
   2  | 
  
   =
  4S2+ a2+b2+c2-2S(a+b+c)  | 
  
   Substitute
  2S for (a+b+c)  | 
 
| 
   3  | 
  
   =4S2+
  a2+b2+c2-2S*2S =4S2+ a2+b2+c2-4S2  | 
  
   | 
 
| 
   4  | 
  
   =
  a2+b2+c2= RHS  | 
  
   | 
 
2.17 Problem 4: If a+b+c 
0 and  a3+b3+c3=3abc
prove that a=b=c
Hint: 
By using suitable identity, arrive at a condition that
{(a-b)2+ (b-c)2+(c-a)2}
=0
If sum of three positive terms have to be zero then
it is necessary that each term has to be zero
(a-b)2=0, (b-c)2=0,
(c-a)2=0
 a-b=
0, b-c=0,c-a =0
2.17 Summary of
learning
| 
   No  | 
  
   Points studied  | 
 
| 
   1  | 
  
   Solving
  of conditional identities(S)  |